تجزیه و تحلیل اثرات متغیرهای اقتصادی بر قیمت سیمان و پیش‌بینی روند قیمتی آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار موسسه مطالعات و پژوهش‌های بازرگانی

2 دکتری اقتصاد و پژوهشگر موسسه مطالعات و پژوهش های بازرگانی

3 دانشیار موسسه مطالعات و پژوهش‌های بازرگانی

چکیده

هدف مطالعه حاضر، شناسایی متغیرهای اثرگذار بر قیمت سیمان و ارائه پیش‌بینی­های درون و برون­ نمونه ­ای با استفاده از داده ­های ماهانه 1401:12-1398:1 و مدل خودرگرسیون برداری (VAR) است. در همین راستا، طبق نتایج آزمون هم ­انباشتگی یوهانسون- جوسیلیوس، وجود رابطه بلندمدت بین متغیرها تأیید شد. سپس روابط بلندمدت و کوتاه­مدت (VECM) برآورد و ضریب جمله تصحیح خطا برابر 0858/0- تخمین زده شد. در مرحله بعدی، بر اساس نتایج توابع واکنش آنی، شوک­های نرخ ارز و شاخص قیمت نهاده­ های ساختمانی (به­ترتیب با تأثیر مثبت 8 و 8/6 درصدی به شکل استاندارد)، بیش از سایر متغیرها بر نوسانات قیمت سیمان مؤثر بوده­اند. نتایج تجزیه واریانس نیز نشان داد که متغیرهای شاخص قیمت نهاده ­های ساختمانی، هزینه انرژی و نرخ ارز، در توضیح قیمت سیمان مؤثر هستند. در نهایت، دو پیش­بینی درون و برون نمونه­ای برآورد شد که مطابق نتایج معیارهای ارزیابی پیش­بینی، مدل تحقیق توانسته پیش‌بینی‌هایی خوبی را از روند قیمتی سیمان ارائه دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of the Effects of Economic Variables on the Price of Cement and Forecasting its Price Trend

نویسندگان [English]

  • Seyed Saleh Akbar Mousavi 1
  • Tayyebeh Rahnemoon Piruj 2
  • Mansour Asgari 3
1 Assistant Professor at Institute for Trade Studies and Research
2 PhD in Economics and researcher at Institute for Trade Studies and Research
3 Associate Professor at Institute for Trade Studies and Research
چکیده [English]

The present study aims to identify the variables affecting the price of cement and provide in- and out-of-sample forecasts using monthly data from 2019:03 to 2023:02 and a vector autoregression (VAR) model. In this regard, according to the results of the Johansen-Juselius cointegration test, the long-term relationship between the variables was confirmed. Then, the long-term and short-term models were estimated, and the error correction coefficient was -0.0858. In the next stage, based on the results of impulse response functions, exchange rate and construction input price index shocks (respectively with a positive effect of 8 and 6.8 percent in the standard form) have been more effective than other model variables on the fluctuations of cement price. The results of variance decomposition also showed that the construction input price index, energy cost, and exchange rate are important in explaining the price of cement. Finally, we estimated in-sample and out-of-sample forecasts. Based on the forecast evaluation criteria, our founding research model can accurately predict the price trend of cement.

کلیدواژه‌ها [English]

  • Price Forecasting
  • Cement
  • VAR Model
Abbasi, M.,  & Hajipour, S. (2014). Comprehensive analysis of the cement industry. Navid mehr publications, Tehran, Iran. (In Persian)
Abdi, H. (2012). The Effect of Government Infrastructure Investments
on Economic Growth in Iran. Master’s thesis, University of Tabriz, Tabriz, Iran. (In Persian)
Ademoroti, A. (1997), Indigenous participation in Nigeria infrastructural development, The Professional Builder, 32(1): 11-15.
Afolabi, A. O. & Abimbola, O. (2022), Application of machine learning in cement price prediction through a web-based system, International Journal of Electrical and Computer Engineering, 12(5): 5214.
Agalega, E. & Antwi, S. (2013), The impact of macroeconomic variables on gross domestic product: empirical evidence from Ghana, International Business Research, 6(5): 108.
Akanni, P. O., Oke, A. E. & Omotilewa, O. J. (2014), Implications of rising cost of building materials in Lagos State Nigeria, SAGE Open, 4(4): 1-7.
Alpar. R. (2003), The application is very variable statistical approach 1 (second edition1), Ankara: Nobel publications.
Asghar Zadeh, A., & Mohammadi, R. (2005). The process of pricing in the cement industry and estimating the role of producers in the pricing of this product. Commercial Surveys, (13), 62-67. (In Persian)
Asl Rousta, H., & Azad, N. (2019). Factors affecting pricing in the cement industry. Journal of Research in Management and Accounting, (27), 119-132. (In Persian)
Bediako, M., Amankwah, E. O. & Adobor, D. (2016), The impact of macroeconomic indicators on cement prices in ghana, Journal of Scientific Research & Reports, 9(7): 1-6.
Cement Industry Employers Association. (2023). Statistics of cement companies and cement production in the country, Tehran, Iran. (In Persian)
Central Bank of the Islamic Republic of Iran. (2023). Economic research and policy department, economic time series database, Time series of unofficial exchange rates, Tehran, Iran. (In Persian)
Consumers and roducers Protection Organization. (2022). The monthly price time series of cement, Ministry of Industry, Mine and Trade, Tehran, Iran. (In Persian)
Danso, H. & Obeng-Ahenkora, N. K. (2018), Major determinants of prices increase of building materials on Ghanaian construction market, Open Journal of Civil Engineering, 8(2): 142-154.
Donya-e-eqtesad Newspaper. (2021). Cement industry's share of electricity consumption. No. 5188, Tehran, Iran. (In Persian)
Edmond, G. F. & SheelaRani, D. S. (2012), Effects and factors relating to cement price fluctuation in Chennai, International Journal of Management (IJM), 3(1): 1-5.
Eslami Andargoli, M., Sadeghi, H., & Mohammadi Khabbazan, M. (2013). The effect of correcting energy carrier prices on the Iran’s economic sectors using input – output table. Journal of Economic Research (Sustainable Growth and Development), 13(2), 85-106. (In Persian)
Feridooni Naghani, A. (2009). Price forecasting of cement in Iran, approach of artificial neural networks in comparison with ARIMA. Master’s thesis, University of Isfahan, Isfahan, Iran. (In Persian)
Haghighat, J.,  & Akbar Mousavi, S. S. (2017). Applied econometrics with JMulTi and EViews 9 softwares, Nooreelm publications, Tehran, Iran. (In Persian)
Huan, Z. & Jianhua, Z. (2013), Analysis of factors to cause the price change of building materials, Adv Mater Res, 683: 668-671.
Liu, Q., Huang, M. & Lee, W. S. (2022), A look-ahead method for forecasting the concrete price, Journal of Applied Mathematics and Physics, 10(5): 1859-1871.
Makoju, J. O. (1995), Cement production in Nigeria and options for meeting national demand, Construction in Nigeria, 10(4): 27.
Maleki, M. H., Mirzaie, M., & Rahimian Asl, M. M. (2022). Scenario planning of the cement industry in Iran with a mixed approach. Journal of Improvement Management, 16(3), 60-88. (In Persian)
Ministry of Energy. (2023). Monthly report of water and electricity industry statistics. Deputy Research and Human Resources, Tehran, Iran. (In Persian)
Nwandu, E. (2016), Impact of rising interest rate on the performances of the Nigerian manufacturing sector, European Journal of Business and Management, 8(10): 125-134.
Oba, K. M. (2019), A multiple linear regression model to predict the price of cement in Nigeria, International Journal of Economics and Management Engineering, 13(12): 1480-1485.
Oladipo, F. O. & Oni, O. J. (2012), A review of selected macroeconomic factors impacting building material prices in developing countries–A case of Nigeria, Ethiopian Journal of Environmental Studies and Management, 5(2): 131-137.
Pesaran, M. H. & Shin, Y. (1998), Impulse Response Analysis in Linear Multivariate Models, Economics Letters, 58: 17-29.
Rajaprabha, R., Velumani, P. & Jayanthi, B. (2016), Factors affecting the cost of building material in construction projects, International Journal of Science and Engineering Research, 4(4): 1-6.
Reichert, B., Souza, A. M., Silva, W. V. D. & Veiga, C. P. D. (2021), Retail purchase price forecast for building materials: evidence from Brazil, International Journal of Business Forecasting and Marketing Intelligence, 7(1): 1-12.
Schumacher, K. & Sathaye, J. (1999), India’s cement Industry: productivity, energy efficiency and carbon emissions, Ernest Orlando Lawrence Berkeley national laboratory, Environmental energy technologies division, LBNL-41842.
Sims, C. (1980), Macroeconomics and Reality, Econometrica, 48: 1-48.
Statistical Centre of Iran. (2023). Permits issued by the country's municipalities. Statistical publications, Tehran, Iran. (In Persian)
Statistical Centre of Iran. (2023). Residential building inputs price index, Statistical data and information, Tehran, Iran. (In Persian)
Theuri, J. W. (2013), Determinants of housing supply in Kenya (Doctoral dissertation), School of Built Environment, University of Nairobi, Kenya.
Udeh, C. (1991), Contract administration in Nigeria proceedings of the international conference on quantity surveying and developing world, held at ABU Zaria, Nigeria.
Ughamadu, F. (1993), Building materials and construction costs in Nigeria, Construction in Nigeria, 10(2): 30-32.
Velumani, P. & Nampoothiri, N. V. (2018), Predicting india’s cement price: a comparison of regression analysis, trend analysis, and artificial neural network, Int J Civ Eng Technol (IJCIET), 9(9): 1907-1915.
Windapo, A. & Cattell, K. (2012), Examining the trends in building material prices: built environment stakeholders’ perspectives, Manage Construct Res Pract, 1: 187-201.