بررسی اثرات نامتقارن نوسانات متغیرهای کلان اقتصادی بر ریسک نقدینگی بانک‌ها در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه اقتصاد اسلامی، دانشکده علوم اقتصادی و اداری، دانشگاه قم، قم

2 دانشیار گروه اقتصاد اسلامی، دانشکده علوم اقتصادی و اداری، دانشگاه قم، قم

3 کارشناسی ارشد اقتصاد گرایش بانکداری اسلامی، دانشکده علوم اقتصادی و اداری، دانشگاه قم، قم

10.22075/jem.2024.33089.1910

چکیده

ریسک نقدینگی یکی از خطرهای مهم موجود برای هر نظام بانکی است، ریسک نقدینگی ناتوانی بانک در پوشش تعهدات مالی خود در سررسید بدون تحمل هزینه است. هدف محققان این است که میزان مناسب متغیرهای ورودی و خروجی سیستم نقدینگی را در حد مطلوب ارائه کنند تا بتوانند نسبت­های مؤثر بر نقدینگی بانک را در حد استاندارد رعایت کنند. نظر به اهمیت بحث ریسک نقدینگی بانک، هدف محوری پژوهش حاضر بررسی اثرات نامتقارن نوسانات متغیرهای کلان اقتصادی بر ریسک نقدینگی بانک‌ها در ایران بوده است. در این راستا اطلاعات مالی سیستم بانکی کشور طی دوره زمانی 1380- 1401 گردآوری شده است. به منظور دستیابی به فرضیه پژوهش و آزمون آنها از روش خودهمبسته با وقفه­های توزیعی غیرخطی (NARDL) استفاده شده است. یافته‌های این مطالعه نشان می‌دهد که متغیرهای نرخ ارز، تورم، تولید ناخالص داخلی و نقدینگی اثرات نامتقارنی بر ریسک نقدینگی در سیستم بانکی کشور داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the asymmetric effects of fluctuations of macroeconomic variables on the liquidity risk of banks in Iran

نویسندگان [English]

  • Yazdan Gudarzi Farahani 1
  • Omid Ali Adeli 2
  • Farzane Jafari Ghasemgheshlaghi 3
1 Assistant Professor, Department of Islamic Economics, Faculty of Economic and Administrative Sciences, University of Qom, Qom
2 Associate Professor, Department of Islamic Economics, Faculty of Economic and Administrative Sciences, University of Qom, Qom
3 Master of Economics, Islamic Banking, Faculty of Economic and Administrative Sciences, Qom University, Qom
چکیده [English]

The Liquidity risk is one of the most important risks for any banking system, liquidity risk is the bank's inability to cover its financial obligations on maturity without incurring costs. The goal of the researchers is to present the appropriate amount of input and output variables of the liquidity system at the optimal level so that they can observe the ratios affecting the bank's liquidity at the standard level. Considering the importance of the discussion of bank liquidity risk, the main goal of the current research was to investigate the asymmetric effects of fluctuations of macroeconomic variables on the liquidity risk of banks in Iran. In this regard, the financial information of the country's banking system has been collected during the period of 2011-2022. In order to reach the research hypothesis and test them, the autocorrelation method with Nonlinear Autoregressive Distributed Lags (NARDL) has been used. The findings of this study show that the variables of exchange rate, inflation, GDP and liquidity have asymmetric effects on liquidity risk in the country's banking system.

کلیدواژه‌ها [English]

  • Liquidity risk
  • Banking system
  • Inflation rate
  • Economic growth
  • Nonlinear Autoregressive Distributed Lags (NARDL)
Abdilianhar, E. (2013). Investigating the asymmetric effects of exchange rate fluctuations on price indices in Iran. Economic Modeling Research, 17, 57-86. (In Persian)
Acharya, V., & Naqvi, H. (2012). The seeds of a crisis: a theory of bank liquidity and risk taking over the business cycle. Journal of Finance, 106(2), 349–366.
Adeli, O. A., & Faridouni, N. (2017). Investigating the impact of uncertainty of macroeconomic variables on the liquidity risk of Islamic banks (case study: development banks). Bimonthly Review of Economic Issues and Policies, 18(7 and 8), 113-87. (In Persian)
Ahmadian, A., & Kianvand, M. (2013). Identifying factors affecting the probability of bank raids. Economic Researches and Policies, 71(2), 79-102. (In Persian)
Azizi, H., & Jafari Samimi, A. (2022). forecasting Iran's inflation with two econometric approaches and artificial neural network; A comparison of NARDL, NARX nonlinear models. Econometric Modeling, 7(3), 39-68. (In Persian)
Baltas, K. N., Kapetanios, G., Tsionas, E., & Izzeldin, M. (2017). Liquidity creation through efficient M&As: A viable solution for vulnerable banking systems? Evidence from a stress test under a panel VAR methodology. Journal of Banking & Finance, 83(2), 36-56.
Bozorgasl, M., Barzideh, F., & Samadi, M. (2016). Investigating the relationship between liquidity risk and credit risk and its effect on financial instability in the banking industry of Iran. Monetary-Banking Research, 10(33), 509-531. (In Persian)
Central Bank of the Islamic Republic of Iran (2022). Time series information bank. (In Persian)
Chiu, Y. C. (2020). Macroeconomic uncertainty, information competition, and liquidity. Finance Research Letters, 34(3), 110-125.
Claeys, G., Papioti, C., & Tryphonides, A. (2023). Liquidity risk, market power and the informational effects of policy. Journal of International Economics, 142(4), 78-95.
Dabachi, U., Mahmood, S., Ahmad, A., Jakada, A., Abdullahi, A., Abubakar, M., & Kamalu, K. (2022). The Asymmetric Influence of Exchange Rate and Inflation on Financial Development in Nigeria: Evidence from NARDL. Iranian Economic Review, 26(4), 833-851.
Elsayed, A. H., Naifar, N., & Nasreen, S. (2022). Financial stability and monetary policy reaction: Evidence from the GCC countries. The Quarterly Review of Economics and Finance, 87(2), 396-405.
Etemadi, K., Ayuzalo, R., & Mirlohi, M. (2019). Investigating the effect of macroeconomic and bank-specific variables on the systematic risk of the conditional value-at-risk copula approach. Econometric Modeling, 5(3), 9-33. (In Persian)
Gudarzi Farahani, Y., Adeli, O. A., & Ghorbani, A. (2019). The Uncertainty of Economic Policies on Exchange Rate Fluctuations Using the Autocorrelation Model Approach with Nonlinear Distribution Breaks (NARDL), Econometric Modeling, 5(4), 147- 171. (In Persian)
Hafez, H. M. (2023). Determinants of liquidity risk: Do corporate governance practices have an impact? An empirical study of emerging markets, Risk Governance and Control. Financial Markets & Institutions, 13(3), 59–75. (In Persian)
Hajiha, Z., & Rajaei, Z. (2019). Non-payment risk and its relationship with the interest rate of granted facilities in different economic sectors. financial engineering and securities management (portfolio management), 2(6), 191-211. (In Persian)
Huynh, J. (2023). Funding liquidity risk: does banking market structure matter?. Managerial Finance, 45(2), 1-24.
Jing, H., & Zhu, Y. (2023), Does cycle superposition amplify bank liquidity risk under different levels of financial openness? Empirical evidence from China. Kybernetes, 3(4), 15-32.
Kefaei, M. A., & Rahzani, M. (2016). Investigating the effect of macroeconomic variables on the liquidity risk of Iranian banks. Economic Research and Policies, 25(81), 261-310. (In Persian)
Madhi, C. D. (2017). The Macroeconomic Factors Impact on Liquidity Risk: The Albanian Banking System Case. European Journal of Economics and Business Studies, 3(1), 56-78.
McLeay, M., Amar, R., & Ryland, T. (2014). Money Creation in the Modern Economy. Bank of England Quarterly Bulletin (Q1), 4(1), 1-14.
Mehrgan, N., Ezzati, M., & Pourhossein, A. (2015). Investigating the causal relationship between interest rate and inflation: using panel data, Economic Research Quarterly, 6(3), 91-105. (In Persian)
Mirzaei, M., Mirlohi, M., & Khademi, M. (2022). Investigating the impact of macroeconomic variables on the Tehran Stock Exchange Index: Comparison of neural network and VAR regression models, Iranian Political Sociology Monthly, 5(9), 1472-1489. (In Persian)
Momeni, F., Shakri, A., Taherpour, J., & Ezzati Abhat, B. (2021). Analysis of the impact of Iran's economic performance on the activity of private banks. Financial Economy, 15(55), 1-22. (In Persian)
Moussa, M. A. B. (2015). The determinants of bank liquidity: Case of Tunisia. International Journal of Economics and Financial Issues, 5(1), 249-259.
Nazemi, B., Sharifi Renani, H., & DaeKarimzadeh, S. (2021). Investigating the asymmetric effects of exchange rate on production insurance premiums of insurance companies using the NARDL-PMG approach. Applied Economics Theory, 8(2), 107-128. (In Persian)
Pesaran M. H., Shin, Y., & Smith R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied of Econometrics, 16(3), 289-326.
Qehaja, D., Gashi, M., & Hoti, A. (2022). The Impact of Macroeconomic Factors on Banks’ Liquidity from 2008 to 2020, International Journal of Applied Economics. Finance and Accounting, 12(2), 69–77.
Saikkonen, P., & Choi, I. (2004). Cointegrating Smooth Transition Regressions. Econometric Theory, 20(1), 301-340.
Sargolzaei, M., & Safai, M. (2022). The impact of macroeconomic shocks on the liquidity risk of the banking system: an approach (MS-VAR). Financial Research, 24(4), 528-576. (In Persian)
Schorderet, Y. (2003). Asymmetric Cointegration University of Geneva. Mimeo.
Singh, A., & Anil, K. S. (2016). An empirical analysis of macroeconomic and bank-specific factors affecting liquidity of Indian banks. Future Business Journal, 2(1), 40–53. (In Persian)
Sopan, J., & Dutta, A. (2018). Determinants of liquidity risk in Indian banks: A panel data analysis. Asian Journal of Research in Banking and Finance, 8(6), 47-59.
Trenca, I., Petria, N., & Corovei, E. A. (2015). Impact of Macroeconomic Variables upon the Banking System Liquidity. Procedia Economics and Finance, 32(2), 1170-1177.
Yacouba, K., & Altinas, H. (2019). The Asymmetric Impact of Macroeconomic Shocks on Stock Returns in Turkey: A Nonlinear ARDL Approach, Journal for Economic Forecasting. Institute for Economic Forecasting, 1(2), 98-116.